Sol practise1.docx

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Hoàng Thị Hoa (trang riêng)
Ngày gửi: 19h:10' 07-07-2020
Dung lượng: 31.3 KB
Số lượt tải: 0
Nguồn:
Người gửi: Hoàng Thị Hoa (trang riêng)
Ngày gửi: 19h:10' 07-07-2020
Dung lượng: 31.3 KB
Số lượt tải: 0
Số lượt thích:
0 người
SOLVE THE DIFFERENTIAL EQUATION AND CAUCHY PROBLEMS BELOW:
1. x = y’ + y’3
Sol:
𝐱=𝐭
𝐭
𝟑
𝐲
𝐭
𝟐
𝟐
𝟑
𝐭
𝟒
𝟒+𝐂
2. x = y’ + ey’
Sol:
𝐱=𝐭
𝐞
𝐭
𝐲
𝐭
𝟐
𝟐
𝐞
𝐭(𝐭−𝟏)+𝐂
3. y = y’2siny’
Sol:
𝐱=𝐭
𝐬𝐢𝐧
𝐭
𝐜𝐨𝐬
𝐭+𝐂
𝐲
𝐭
𝟐
𝐬𝐢𝐧
𝐭
4. x(1 + y2)2dx + y(1 + x2)2dy = 0
Sol:
𝟏
𝟏
𝐱
𝟐
𝟏
𝟏
𝐲
𝟐=𝐂
5. (x2 – yx2)y’ + y2 + xy2 = 0
Sol:
𝟏
𝐲
𝐥𝐧
𝐲
𝐥𝐧
𝐱
𝟏
𝐱+𝐂
6. y’cos2y – siny = 0
Sol: 𝐱
𝐥𝐧
𝐜𝐬𝐜
𝐲
𝐜𝐨𝐭
𝐲+𝟐
𝐜𝐨𝐬
𝐲+𝐂
7. y’ =
lnx+1
lny+1
Sol: 𝐲
𝐥𝐧
𝐲=𝐱
𝐥𝐧
𝐱+𝐂
8.
e
y−1
e
y−2
y
1
x
Sol:
𝟏
𝟐
𝐲
𝐲
𝐥𝐧
𝟐
𝐥𝐧
𝐱+𝐂
9. y’ + sin(x + y) = sin (x - y)
Sol: 𝟐
𝐬𝐢𝐧
𝐱+𝐂
𝐥𝐧
𝐜𝐬𝐜
𝐲
𝐜𝐨𝐭
𝐲
10) ( y - x)dx + (y + x)dy = 0
Sol: 𝐱
𝟏
𝐂
𝐲
𝐱
𝟐+𝟐
𝐲
𝐱−𝟏
𝐥𝐧
𝐱−𝟏
𝟐
𝐥𝐧
𝐮
𝟐+𝟐𝐮−𝟏+𝐂
11) xdy – ydx =
x
2
y
2 dx
Sol: 𝐱=𝐂
𝐲
𝐱
𝐲
𝐱
𝟐+𝟏
𝐥𝐧
𝐱
𝐥𝐧
𝐮
𝐮
𝟐+𝟏+𝐂
12) xyy’ + x2 -2y2 = 0
Sol: 𝐱=𝐂
𝐲
𝐱
𝟐−𝟏
𝐥𝐧
𝐱
𝐥𝐧
𝐮
𝟐−𝟏+𝐂
13) (3x2 + y2)y + (y2 – x2)xy’ = 0
Sol: 𝐱=𝐂
𝐲
𝐱
𝐲
𝐱
𝟐+𝟏
𝐥𝐧
𝐱
𝟏
𝟐
𝐥𝐧
𝐮
𝐮
𝟐+𝟏+𝐂
14) xcos
y
x
ydx+xdy=ysin
y
x(xdy−ydx)
Sol: 𝐱=𝐂
𝐬𝐞𝐜
𝐲
𝐱
𝐲
𝐱
𝐥𝐧
𝐱
𝟏
𝟐
𝐥𝐧
𝐬𝐞𝐜
𝐮
𝐮+𝐂
15) x2 y’ + y2 + xy(y’ - 1) = 0
Sol:
𝐥𝐧
𝐱
𝟏
𝟐
𝟏
𝐮
𝐥𝐧
𝐮+𝐂
𝐥𝐧
𝐱
𝟏
𝟐
𝐱
𝐲
𝐥𝐧
𝐱
𝐲
16) y’ =
x−y+1
x+y+3
17) y’ = 2
y+2
x+y−1
2
18)x
1
y
2
dx+y
1
x
2
dy = 0; y(0) = 1
19)
1
e
2x
y
2
dy
e
x
dx; y(0) = 0
20) sinxdy – ylnydx = 0; y(0) = 1
21)
x
2+1
y
y
2+4; y(1) = 2
22) y’sinxcosy + cosxsiny = 0; y
π
4) =
π
4
1. x = y’ + y’3
Sol:
𝐱=𝐭
𝐭
𝟑
𝐲
𝐭
𝟐
𝟐
𝟑
𝐭
𝟒
𝟒+𝐂
2. x = y’ + ey’
Sol:
𝐱=𝐭
𝐞
𝐭
𝐲
𝐭
𝟐
𝟐
𝐞
𝐭(𝐭−𝟏)+𝐂
3. y = y’2siny’
Sol:
𝐱=𝐭
𝐬𝐢𝐧
𝐭
𝐜𝐨𝐬
𝐭+𝐂
𝐲
𝐭
𝟐
𝐬𝐢𝐧
𝐭
4. x(1 + y2)2dx + y(1 + x2)2dy = 0
Sol:
𝟏
𝟏
𝐱
𝟐
𝟏
𝟏
𝐲
𝟐=𝐂
5. (x2 – yx2)y’ + y2 + xy2 = 0
Sol:
𝟏
𝐲
𝐥𝐧
𝐲
𝐥𝐧
𝐱
𝟏
𝐱+𝐂
6. y’cos2y – siny = 0
Sol: 𝐱
𝐥𝐧
𝐜𝐬𝐜
𝐲
𝐜𝐨𝐭
𝐲+𝟐
𝐜𝐨𝐬
𝐲+𝐂
7. y’ =
lnx+1
lny+1
Sol: 𝐲
𝐥𝐧
𝐲=𝐱
𝐥𝐧
𝐱+𝐂
8.
e
y−1
e
y−2
y
1
x
Sol:
𝟏
𝟐
𝐲
𝐲
𝐥𝐧
𝟐
𝐥𝐧
𝐱+𝐂
9. y’ + sin(x + y) = sin (x - y)
Sol: 𝟐
𝐬𝐢𝐧
𝐱+𝐂
𝐥𝐧
𝐜𝐬𝐜
𝐲
𝐜𝐨𝐭
𝐲
10) ( y - x)dx + (y + x)dy = 0
Sol: 𝐱
𝟏
𝐂
𝐲
𝐱
𝟐+𝟐
𝐲
𝐱−𝟏
𝐥𝐧
𝐱−𝟏
𝟐
𝐥𝐧
𝐮
𝟐+𝟐𝐮−𝟏+𝐂
11) xdy – ydx =
x
2
y
2 dx
Sol: 𝐱=𝐂
𝐲
𝐱
𝐲
𝐱
𝟐+𝟏
𝐥𝐧
𝐱
𝐥𝐧
𝐮
𝐮
𝟐+𝟏+𝐂
12) xyy’ + x2 -2y2 = 0
Sol: 𝐱=𝐂
𝐲
𝐱
𝟐−𝟏
𝐥𝐧
𝐱
𝐥𝐧
𝐮
𝟐−𝟏+𝐂
13) (3x2 + y2)y + (y2 – x2)xy’ = 0
Sol: 𝐱=𝐂
𝐲
𝐱
𝐲
𝐱
𝟐+𝟏
𝐥𝐧
𝐱
𝟏
𝟐
𝐥𝐧
𝐮
𝐮
𝟐+𝟏+𝐂
14) xcos
y
x
ydx+xdy=ysin
y
x(xdy−ydx)
Sol: 𝐱=𝐂
𝐬𝐞𝐜
𝐲
𝐱
𝐲
𝐱
𝐥𝐧
𝐱
𝟏
𝟐
𝐥𝐧
𝐬𝐞𝐜
𝐮
𝐮+𝐂
15) x2 y’ + y2 + xy(y’ - 1) = 0
Sol:
𝐥𝐧
𝐱
𝟏
𝟐
𝟏
𝐮
𝐥𝐧
𝐮+𝐂
𝐥𝐧
𝐱
𝟏
𝟐
𝐱
𝐲
𝐥𝐧
𝐱
𝐲
16) y’ =
x−y+1
x+y+3
17) y’ = 2
y+2
x+y−1
2
18)x
1
y
2
dx+y
1
x
2
dy = 0; y(0) = 1
19)
1
e
2x
y
2
dy
e
x
dx; y(0) = 0
20) sinxdy – ylnydx = 0; y(0) = 1
21)
x
2+1
y
y
2+4; y(1) = 2
22) y’sinxcosy + cosxsiny = 0; y
π
4) =
π
4
 




















